

Eine Minute im Internet...

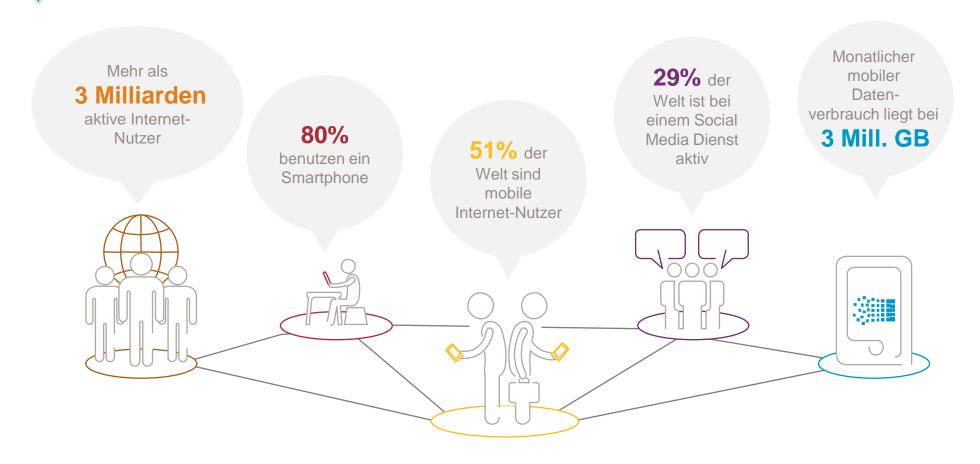
http://pennystocks.la/internet-in-real-time/

Über mich

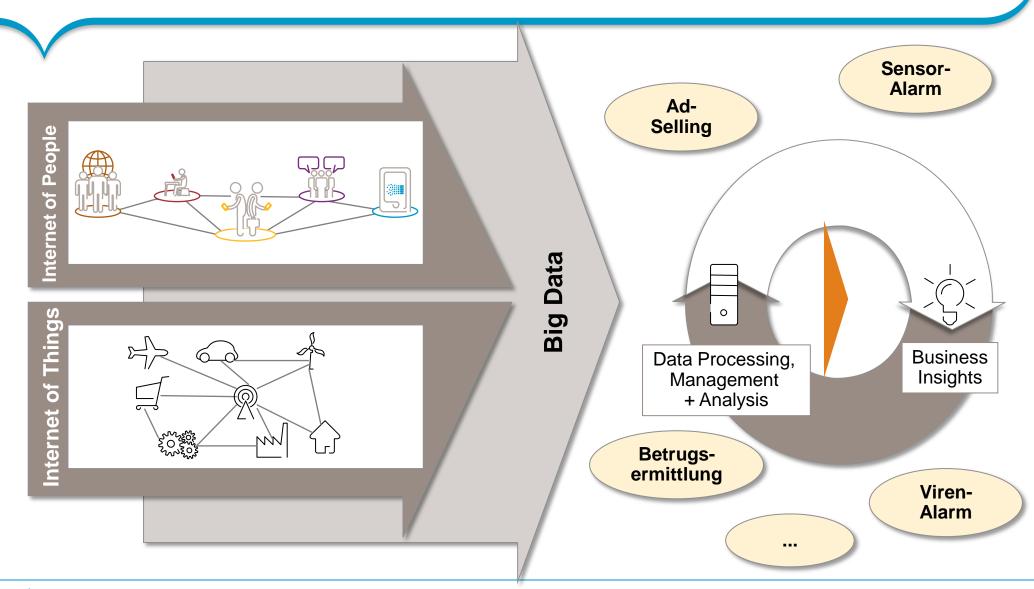
Tim LüeckeSenior Solution Architect
Lübecker Straße 128, Hamburg

Phone: +49 40 254491 314

E-Mail: tim.lueecke@capgemini.com

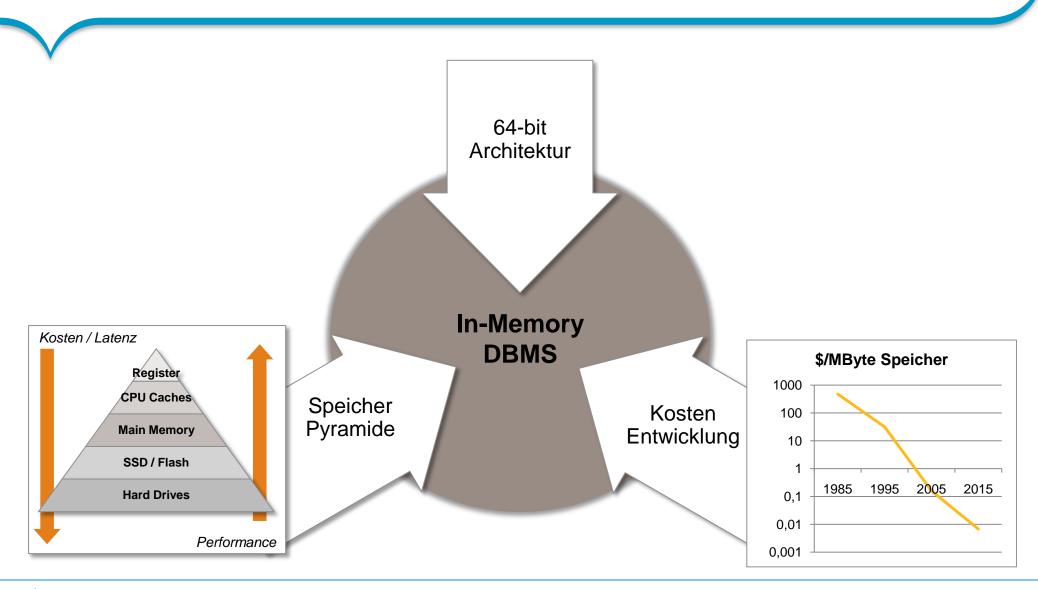

- Motivation
- In-Memory im Überblick
- Paradigmen im Wandel?

- Motivation
- In-Memory im Überblick
- Paradigmen im Wandel?

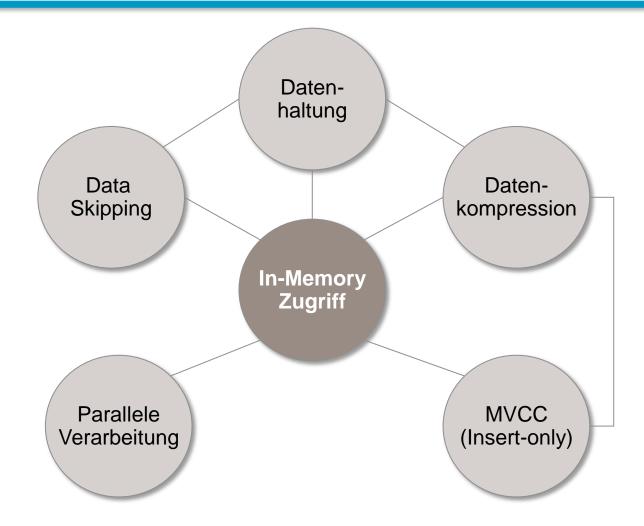

Digitalisierung – einige Fakten

http://wearesocial.sg/blog/2015/01/digital-social-mobile-2015/https://www.globalwebindex.net/

Digitalisierung und Big Data



- Motivation
- In-Memory im Überblick
- Paradigmen im Wandel?



In-Memory DBMS als mögliche Lösung

In-Memory Techniken

In-Memory Angebote der "Big Player"

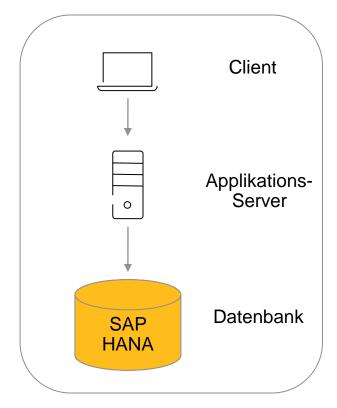
	Microsoft SQL Server 2014	IBM DB2 BLU Acceleration	Oracle 12c w/ In-Memory	
Fokussierung	OLTP (OLAP)	OLAP	OLAP (OLTP)	
Datenhaltung	Zeilen (In-Memory Organized Tables) Spalten (Columnstore indices)	Spalten (Column-organized tables)	Beides simultan (Buffer Cache für Zeilen)	
Daten Kompression	Dictionary encodingValue encodingRun-length encodingBit-packing	Dictionary encodingFrequency compressionPage compression	Dictionary encodingRun-length encodingBit-packing	
Data Skipping		Ja	Ja	
MVCC	Ja	Ja (Optimiert für Batch-Insert)		
Parallele Verarbeitung		SIMD processingMulti-core processing	SIMD ProcessingRAC (Shared nothing)	
Besonderheiten	 DLL für DML Anfragen (kein ALTER TABLE) Flexible Ablage auf "heap" Compiled Stored Procedures 	Shadow Tables für OLTP Systeme (über Data Replication)	Disk bleibt führendes Speichermdedium	

"NewSQL"-Anbieter (eine Auswahl…)

	VoltDB	MemSQL	SAP HANA	
Fokussierung	OLTP mit hohem Durchsatz inkl. Kontext-Evaluierung	OLTP mit hohem Durchsatz bei gleichzeitigem Zugriff	OLTP + OLAP in einem System	
Datenhaltung	Zeilen (?)	Zeilen	Beides (Spalten präferiert)	
Daten Kompression	N/A	N/A	Dictionary encodingRun-Length encodingCluster encoding	
Data Skipping	N/A	N/A		
MVCC	Ja	Ja	Ja	
Parallele Verarbeitung	 Single Threaded Transactions Parallelverarbeitung im Cluster (Shared Nothing) 	Parallelverarbeitung im Cluster (Shared nothing)	Parallelverarbeitung im Cluster (Shared nothing)	
Besonderheiten	Zugriff über kompilierte Stored ProceduresDB komplett In-Memory	 SQL Runtime Code Generation (C++) Keine Locks auf Datenstrukturen (z.B. skip lists) 	 DB komplett In-Memory Plattform für Anwendungs- Entwicklung 	

SAP HANA Proof-of-Concept

Ziele


- Technische Machbarkeit
- Performance-Vergleich

Vorgehen

- Migration der produktiven Daten nach HANA
- Daten werden komplett in Spalten abgelegt
- Keinerlei weitere Performance-Optimierung (!)
- Anwendung bleibt komplett unberührt

Benchmark:

- Erstelle SQL Trace aus produktivem Betrieb
- Trace auf SAP HANA erneut ablaufen lassen

https://www.de.capgemini.com/customer-experience-management/realtime-applications

Bisherige Ergebnisse

Projektbeispiele Daten Kompabilität **Performance**

Ergebnisse

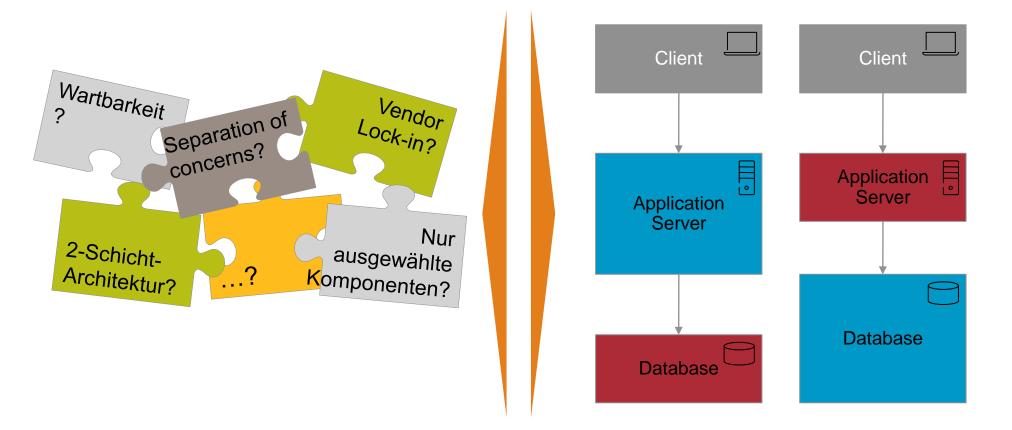
- Enterprise Anwendung mit komplexen Ad-hoc Abfragen für Super-User
- Medienarchiv mit integrierter Volltext-Suche
- Erfolgreicher, automatischer Import der Daten ohne Verlust
- Datenbank-Größe um bis zu 65% reduziert
- Großteil der Queries (fast) kompatibel
- DB-spezifische Queries benötigen Bearbeitung
- Generell: schneller im Vergleich zur Produktion
- Für Komplexe Ad-hoc Queries signifikant schneller

- Motivation
- In-Memory im Überblick
- Paradigmen im Wandel?

Paradigmen im Wandel?

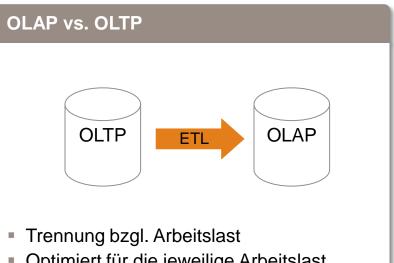
System-Architektur

Paradigma


- Code-to-data
- 3-Schichten-Architektur

Enterprise-Architektur

- Trennung von OLTP und OLAP
- vs. Fragmentierung der Data Management Systeme



Code-to-data vs. 3-Schichten-Architektur

Trennung zwischen OLTP und OLAP Systemen

- Optimiert f
 ür die jeweilige Arbeitslast
- ETL Prozesse benötigt, um Daten zu portieren

Nachteile

- Real-time Analyse stark erschwert
- OLAP meist eingeschränkt bzgl. Fragestellungen
- ETL Kosten
- Hohe Redundanz

Mögliche Vision

- Einheitliche Datenhaltung sowohl für OLTP als auch für OLAP
- Abfragen direkt auf Produktionsdaten
- "Googling for Data Insights"

OLTP / OLAP Charakteristiken neu bewertet

Charakteristik	OLTP	OLAP	Bewertung
Performance	Kritisch	Entspannter	Trennung eher gezwungene Notwendigkeitkeine inhärente Anforderung
Zugriffsmenge	Klein	Groß	 OLTP Untermenge von OLAP Falls effizient, kein Argument für eine Trennung
Zugriffsart	CRUD	Read-only Batch Update	OLAP Untermenge von OLTP
Redundanz	Nein	Ja	Wird nicht mehr benötigt, Aggregation im Speicher
Datenmenge	Klein	Groß	Wenn parallelisierbar können auch große Datenmengen im Hauptspeicher eines Clusters gehalten werden
Anzahl User	Groß	Klein	Ebenfalls eine Frage der Parallelisierbarkeit
Verwendung	Produktion	Analyse	Letztlich nur die Frage welcher Client das System nutzt
Orientierung	Applikation	Domäne	 Datenintegration/–Konsolidierung weiterhin benötigt Valides Argument für zentralisierte Data Warehouses
Datenhistorie	Nein	Ja	 Valider Grund um OLTP nicht aufzublähen Insert-Only könnte Alternative darstellen
Mission Critical	Ja	Nein	Valider Grund zur Risikominimierung

Zusammenfassung

- Digitalisierung und Big Data benötigen neue technologische Antworten
- In-Memory ist eine mögliche Antwort und geht einher mit einer Sammlung von dazugehörigen Techniken
- Alle namhaften und zahlreichen neue Anbieter drängen auf den Markt
- Alte Paradigmen sollten im Zeitalter von In-Memory zumindest hinterfragt werden

People matter, results count.

Über Capgemini

Mit mehr als 140.000 Mitarbeitern in über 40 Ländern ist Capgemini einer der weltweit führenden Anbieter von Management- und IT-Beratung, Technologie-Services sowie Outsourcing-Dienstleistungen. Im Jahr 2013 betrug der Umsatz der Capgemini-Gruppe 10,1 Milliarden Euro.

Gemeinsam mit seinen Kunden erstellt Capgemini Geschäfts- wie auch Technologielösungen, die passgenau auf die individuellen Anforderungen zugeschnitten sind. Auf der Grundlage seines weltweiten Liefermodells Rightshore® zeichnet sich Capgemini als multinationale Organisation durch seine besondere Art der Zusammenarbeit aus − die Collaborative Business ExperienceTM.

Rightshore® ist eine eingetragene Marke von Capgemini

www.de.capgemini.com

